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Abstract. A mathematical model for the dynamics of prion proliferation is
analyzed. The model involves a system of three ordinary differential equations
for the normal prion forms, the abnormal prion forms, and polymers comprised
of the abnormal forms. The model is a special case of a more general model,
which is also applicable to other models of infectious diseases. A theorem of
threshold type is derived for this general model. It is proved that below and
at the threshold, there is a unique steady state, the disease-free equilibrium,
which is globally asymptotically stable. Above the threshold, the disease-
free equilibrium is unstable, and there is another steady state, the disease
equilibrium, which is globally asymptotically stable.

1. Introduction. In this paper we analyze a system of ordinary differential equa-
tions, which is applicable to a model of prion proliferation dynamics. The model
is is a special case of a more general model, which is also applicable to SEIS epi-
demic models and models of in-host viral infection dynamics. The prion model
has been introduced in [11], based on the works of Masel, Jansen and Nowak [25],
Nowak, Krakauer, Klug and May [27] and others. For a comprehensive explana-
tion of the prion model and relevant biochemical literature we refer to [11], Eigen
[13], and Prusiner [31]. Prions are proteins that are believed to be responsible
for certain diseases such as bovine spongiform encephalopathy and Creutzfeld-Jacob
disease. There are two basic forms of prions of interest here, the Prion Protein
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Cellular PrPC and the Prion Protein Scrapie PrPSc. The single molecule proteins
PrPC , also called monomers in the sequel, are protease resistant proteins produced
normally in the body. It is hypothesized that PrPC provide a protective function
against cell apoptosis (Roucou, Gains and Lablanc [32]). On the other hand, the in-
fectious prions PrPSc convert PrPC to the PrPSc form, which attach and lengthen
in long string-like fibrils. Above a critical length x0 > 0 the fibrils are stable, and
can contain thousands of infectious PrPSc. These fibrils have the ability to split
into two pieces, which can elongate, and split again. There are six processes which
govern the dynamics of prions in the model:

• elongation of fibrils at rate τ ;
• splitting of fibrils of length y > 0 into lengths 0 < x < y and y − x with

probability κ(x, y) at rate β(y);
• degradation of PrPC monomers at rate γ;
• degradation of fibrils of length x at rate µ(x) .
• production of normal PrPC monomers at rate λ;
• decomposition of fibrils of length ≤ x0 resulting from splitting into PrPC

monomers, where x0 ≥ 1 is the minimum viable fibril length.
Denoting the number of PrPC monomers at time t by V (t) and the density of

polymers of length x at time t by u(t, x), we obtain the following model equations:

d

dt
V (t) = λ− γV (t)− τV (t)

∫ ∞

x0

u(t, x)dx

+ 2
∫ x0

0

x

∫ ∞

x0

β(y)κ(x, y)u(t, y)dy dx,

∂

∂t
u(t, x) + τV (t)

∂

∂x
u(t, x) + (µ(x) + β(x))u(t, x) (1)

= 2
∫ ∞

x

β(y)κ(x, y)u(t, y)dy,

V (0) ≥ 0, u(t, x0) = 0, u(0, x) = u0(x), x ≥ x0,

where t ≥ 0 and 1 ≤ x0 ≤ x < ∞. The factor 2 in (1) arises from the symmetry of
a fibril splitting into 2 pieces, one of length x and its complement of length y − x.

Observe that the splitting kernel κ(y, x) should satisfy the following properties:

κ(y, x) ≥ 0, κ(y, x) = κ(x− y, x),
∫ x

0

κ(y, x)dy = 1,

for all x ≥ x0, y ≥ 0, and κ(y, x) = 0 if y > x or x ≤ x0. We assume that splitting is
equi-distributed, the rate of splitting is proportional to length, and the degradation
rate of polymers is constant. Therefore, we make the further assumptions

κ(y, x) = 1/x if x > x0 and 0 < y < x, κ(y, x) = 0 elsewhere,

β(x) = βx is linear, and µ(x) ≡ µ is constant. Under these assumptions the model
contains only the 6 parameters λ, τ, γ, µ, β, and x0, and can be reduced to a system
of 3 ordinary differential equations. In fact, introducing the new functions

U(t) =
∫ ∞

x0

u(t, y)dy and P (t) =
∫ ∞

x0

yu(t, y)dy,

representing the total number of polymers, and the total number of monomers
in polymers at time t, respectively, and integrating the equation for u(t, x) over
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[x0,∞), assuming u(t, x0) = 0, and limx→∞ u(x, t) = 0, we obtain

d

dt
U(t) = −τV (t)u(t, x)|∞x0

− µU(t)− βP (t) + 2β

∫ ∞

x0

∫ ∞

x

u(t, y)dydx

= −µU(t)− βP (t) + 2β

∫ ∞

x0

u(t, y)(y − x0)dy

= −µU(t)− βP (t) + 2βP (t)− 2βx0U(t).

Multiplying the equation for u(t, x) by x, assuming limx→∞ xu(x, t) = 0, and inte-
grating yields

d

dt
P (t) = −τV (t)(xu(t, x)|∞x0

−
∫ ∞

x0

u(t, y)dy)

−µP (t)− β

∫ ∞

x0

u(t, x)x2dx + 2β

∫ ∞

x0

x

∫ ∞

x

u(t, y)dydx

= τV (t)U(t)− µP (t)− β

∫ ∞

x0

u(t, x)x2dx + β

∫ ∞

x0

u(t, y)(y2 − x2
0)dy

= τV (t)U(t)− µP (t)− βx2
0U(t).

We thus obtain the following system of three ordinary differential equations:

U̇ = βP − µU − 2βx0U,

V̇ = λ− γV − τUV + βx2
0U, (2)

Ṗ = τUV − µP − βx2
0U

with initial conditions

U(0) = U0 ≥ 0, V (0) = V0 ≥ 0, P (0) = P0 ≥ x0U0.

Once the solutions of (2) are known, one has only to solve the linear partial integro-
differential equation in (1) to obtain the density with respect to fibril length u(t, x).
The full pde-system (1), which contains also the dynamics of the fibril density
u(t, x), is analyzed in [12] and Simonett and Wallker [35]. Our goal is to analyze
the global behavior of the solutions of (2) in the cone U ≥ 0, V ≥ 0, P ≥ x0U . We
prove the following result concerning the qualitative behavior of the system (2):

Theorem 1.1. Suppose x0, β, γ, λ, µ, τ > 0. The system (2) induces a global semi-
flow on the set K = {(U, V, P ) ∈ R3 : U, V, P − x0U ≥ 0}. There is precisely one
disease-free equilibrium (0, λ/γ, 0) which is globally asymptotically stable if and only
if µ + x0β ≥

√
λβτ/γ. On the other hand, if µ + x0β <

√
λβτ/γ, then there is a

unique disease equilibrium

(
λβτ − γ(µ + βx0)2

µτ(µ + 2βx0)
,
(µ + βx0)2

βτ
,
λβτ − γ(µ + βx0)2

βµτ
),

which is globally asymptotically stable in K \ [{0} × R+ × {0}].
This result shows that the solutions of (2) exhibit the typical behavior of epidemic

models. Let R0 = λβτ/γ(µ + βx0)2, which is the number of secondary infections
produced on average by one infectious prion. If R0 ≤ 1, then the disease dies
out and the disease-free equilibrium is globally asymtotically stable. If R0 > 1, a
unique nontrivial steady state, the disease equilibrium, bifurcates from the trivial
one and subsumes the global asymptotic stability. Thus, for R0 > 1, the disease
persists and exhibits strong stability properties. In Fig. 1 below we illustrate the
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global attractivity of the disease steady state in a simulation of prion proliferation
dynamics corresponding to data from Rubentstein et al. [34].
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Figure 1. Phase portrait for the system (2). The solutions
(U(t), V (t), P (t)) corresponding to different initial values converge
to the globally attracting disease steady state. The parameters of
the simulations are derived from [25] and [34]: λ = 4400 day−1, τ =
.3 SAF/sq −1day−1, β = .0001 SAF/sq −1 day−1, µ = .04 day−1,
γ = 5.0 day−1, x0 = 6, where SAF/sq denotes scrapie associated
fibrils per square unit of measurement.

2. A General Three Compartment Model of Infection Dynamics. As gen-
eral references for the theoretical results employed below we refer to the monographs
of Amann [1] or Chicone [5]. We first transform the model of prion proliferation (2)
to the following more general system:

ẋ = z − ξx,

ẏ = σ − ρy − xy + δx, (3)
ż = xy − z,

with initial conditions x(0) = x0 ≥ 0, y(0) = y0 ≥ 0, z(0) = z0 ≥ 0. We prove the
following theorem for (3):

Theorem 2.1. Suppose ξ > 0, σ > 0, ρ > 0 and δ ∈ [0, ξ). The system (3) induces a
global semiflow on the set R3

+. There exists precisely one (disease-free) equilibrium
(0, σ/ρ, 0), which is globally asymptotically stable, if and only if σ ≤ ξρ. On the
other hand, if σ > ξρ there is one addtional (disease) equilibrium (σ−ξρ

ξ−δ , ξ, ξ σ−ξρ
ξ−δ ),

which is globally asymptotically stable in R3
+ \ [{0} × R+ × {0}].
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Theorem 1.1 is proved by Theorem 2.1, with (2) converted to (3) as follows: First,
to work in the standard positive cone R3

+, we replace the variable P by W = P−x0U
(the feasible values of P and U satisfy P ≥ x0U , since the minimum value for P is
x0U). This gives the system

x0U̇ = βx0W − (µ + βx0)x0U,

V̇ = λ− γV − τ

x0
x0UV + βx0x0U,

Ẇ =
τ

x0
x0UV − (µ + βx0)W,

with initial values U(0) = U0 ≥ 0, V (0) = V0 ≥ 0 and W (0) = W0 = P0−x0U0 ≥ 0.
Next, perform a scaling of the variables by setting

x0U(t) = ax(αt), V (t) = by(αt), W (t) = cz(αt).

With α = µ + βx0, a = (µ + βx0)x0/τ , b = c = (µ + βx0)2/βτ we obtain the
system (3) with ξ = 1, σ = λβτ/(µ + βx0)3 > 0, ρ = γ/(µ + βx0) > 0, δ =
(βx0/(µ + βx0))2 ∈ (0, 1).

The model (3) also admits an interpretation for SEIS epidemics. Consider the
populations of susceptibles S(t) (individuals capable of acquiring the disease), ex-
posed E(t) (infected individuals who are not yet contagious), and infectious I(t)
(infected individuals who are capable of transmitting the disease to susceptibles).
We assume a constant influx of susceptibles λ > 0 and natural death rate γ > 0
of susceptibles. Susceptibles enter the exposed class at a rate proportional to the
product of the susceptible and infectious populations with rate constant τ . Ex-
posed individuals enter the infectious class with rate α or are otherwise removed
with rate µ. Infectious individuals return to the susceptible class with rate β or are
otherwise removed with rate ν. Thus, infectious individuals either die, recover with
permanent immunity, or recover with no immunity. The equations of the model are

Ṡ = λ− γS − τIS + βI,

Ė = τIS − (α + µ)E, (4)

İ = αE − (β + ν)I,

Theorem 2.2. Suppose λ, γ, τ, β, α, µ, ν > 0. The system (4) induces a global semi-
flow in R3

+. Let R0 = αλτ
γ(α+µ)(β+ν) . There is precisely one disease-free equilibrium

S̄ = λ/γ, Ē = 0, Ī = 0, which is globally asymptotically stable if and only if R0 ≤ 1.
On the other hand, if R0 > 1, then there is a unique disease equilibrium

S̄ =
λβτ − γ(µ + βx0)2

µτ(µ + 2βx0)
, Ē =

(µ + βx0)2

βτ
, Ī =

λβτ − γ(µ + βx0)2

βµτ
,

which is globally asymptotically stable in R3
+ \ [R+ × {0} × {0}].

The conversion of (4) to (3) is accomplished as follows: Set x(t) = τ
α+µI( t

α+µ ),
y(t) = ατ

(α+µ)2 S( t
α+µ ), z(t) = ατ

(α+µ)2 E( t
α+µ ), ξ = β+ν

α+µ , σ = ατλ
(α+µ)3 , ρ = γ

α+µ ,

δ = αβ
(α+µ)2 . Note that δ < ξ. For the SEIS model (4) R0 = αλτ

γ(α+µ)(β+ν) = σ
ξρ is the

number of secondary infections produced by a single infectious individual.
SEIS models have been studied extensively, and many results are known ([3], [4],

[6], [7], [8], [10], [14], [15], [16], [17], [19], [20], [21], [22], [23], [24], [26], [33], [36],
[37]). In [22] the global stability of the disease equilibrium was established for a
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SEIRS model with constant total population size, which reduces to a SEIS model
similar to (4) as the parameter for transition from I to R tends to infinity. In [7]
the global stability of the disease equilibrium was established for a model similar to
(4), but with more restrictive loss rates.

The model (4) can also be interpretated in terms of viral-host cell interactions
(Bonhoeffer, May, Shaw, and Nowak [2] and May and Nowak [28]). Consider the
populations of virus V (t), uninfected host cells T (t), and infected host cells T ∗(t) in
an infected host at time t. Virus is produced at a rate proportional to the population
of infected cells with rate constant α and loss rate ν. There is a constant source
λ and normal loss rate γ of uninfected cells, an additional loss of uninfected cells
(and gain of infected cells) proportional to the product of infected cells and virus
with rate constant τ , and virus-stimulated production of uninfected cells at a rate
β. Infected cells have loss rate µ. The equations of this model are

V̇ = αT ∗ − νV,

Ṫ = λ− γT − τV T + βV, (5)

Ṫ ∗ = τV T − µT ∗,

Theorem 2.3. Suppose α, ν, λ, γ, τ, µ > 0, β ≥ 0 and αβ < µν. The system (5)
induces a global semiflow in R3

+. Let R0 = αλτ
γµν . There is precisely one disease-

free equilibrium V̄ = 0, T̄ = λ/γ, T̄ ∗ = 0, which is globally asymptotically stable if
and only if R0 ≤ 1. On the other hand, if R0 > 1, then there is a unique disease
equilibrium

V̄ =
αλτ − γµν

τ(µν − αβ)
, T̄ =

µν

ατ
, T̄ ∗ =

ν(αλτ − γµν)
τα(µν − αβ)

.

which is globally asymptotically stable in R3
+ \ [{0} × R+ × {0}].

The conversion of (5) to (3) is accomplished as follows: Set x(t) = τ
µV ( t

µ ),
y(t) = ατ

µ2 T ( t
µ ), z(t) = ατ

µ2 T ∗( t
µ ), ξ = ν

µ , σ = ατλ
µ3 , ρ = γ

µ , δ = αβ
µ2 . The condition

δ < ξ requires αβ < µν. For the virus-host cell dynamics model (5) R0 = αλτ
γµν = σ

ξρ

is the number of secondary host cell infections from a single infected host cell.
In the case that β = 0 the global asymptotics of system (5) have been analyzed
by Korobeinikov [17], [18], by transforming (5) to an equivalent SEIR model with
constant host population size. The system (5) (with β = 0) has been used exten-
sively in modeling the within-host dynamics of HIV infection (Perelson, Neumann,
Markowitz, Leonard, and Ho [29], Perelson and Nelson [30], Gilchrist, Coombs, and
Perelson [9]).

3. Proof of the Theorems.

3.1. Global Well-Posedness. Since the right hand sides of (3) are polynomial,
this system generates a local flow on R3. Recall that an ode-system u̇ = f(u) on
Rn is called quasipositive if the condition

u ≥ 0, uk = 0 ⇒ fk(u) ≥ 0

is valid for all k = 1, . . . , n. System (3) obviously is quasipositive, hence solutions
with nonnegative initial data (x0, y0, z0) ∈ R3

+ stay in the standard cone R3
+ for all
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positive times. From the three equations we get with ϕ = ξ+δ
2ξ x + y + z

ϕ̇ = σ − ρy − ξ − δ

2
x− ξ − δ

2ξ
z ≤ σ − εϕ,

where ε = min{ρ, ξ−δ
2 , ξ−δ

2ξ }. Hence we obtain the bound

0 ≤ ϕ(t) ≤ σ

ε
+ ϕ(0)e−εt,

whenever (x0, y0, z0) ∈ R3
+ and t ≥ 0. This implies boundedness of the solutions,

hence global existence for all positive times, which shows that system (3) induces a
global semiflow on the standard cone R3

+.

3.2. Steady States. Observe that the set {(x, y, z) ∈ R3
+ : x = z = 0} is an

invariant subset of (3). Thus, the system trivializes to the single equation

ẏ = σ − ρy, y(0) = y0,

which admits the single steady state ȳ = σ/ρ. Further, ȳ is globally asymptotically
stable in the set {(x, y, z) ∈ R3

+ : x = z = 0}. Hence the system (3) has the steady
state (0, σ/ρ, 0) which we call the trivial or disease free equilibrium.

An simple computation shows that the system admits another steady, namely,
(x∗, y∗, z∗), where x∗ = (σ − ξρ)/(ξ − δ), y∗ = ξ, and z∗ = ξx∗. We call this
steady state the nontrivial or disease equilibrium. Note that this steady state is
only biologically relevant if it lies in R3

+ which means that the condition σ ≥ ξρ
must hold. At the critical value σ = ξρ this steady state bifurcates from the trivial
one via a simple transcritical bifurcation.

To examine the local exponential asymptotic stability properties of these equi-
libria we compute their linearizations. At the trivial equilibrium we obtain the
linearization

A =



−ξ 0 1
δ − σ/ρ −ρ 0
σ/ρ 0 −1


 .

The eigenvalues of this matrix are

z1,2 =
−1− ξ ±

√
(1− ξ)2 + 4σ/ρ

2
, z3 = −ρ

It is easily seen that all three eigenvalues are negative, if σ < ξρ. By the principle
of linearized stability we thus see that the trivial equilibrium is locally exonentially
asymptotically stable if ȳ = σ/ρ < ξ, which is precisely the case when the disease
equilibrium has no biological relevance.

For the linearization at the disease equilibrium we get

A =



−ξ 0 1
δ − ξ −ρ− x∗ 0
ξ x∗ −1


 ,

where x∗ = (σ − ξρ)/(ξ − δ) > 0. The characteristic polynomial of this matrix is
given by

p(z) = det(zI −A) = z3 + a1z
2 + a2z + a3,

a1 = 1 + ξ +
σ − δρ

ξ − δ
, a2 =

(1 + ξ)(σ − δρ)
ξ − δ

, a3 = σ − ξρ.
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Since a1a2 > (1+ ξ)(σ− δρ) > a3, the Ruth-Hurwitz criterion implies that all roots
of p have negative real parts, which shows that the disease equilibrium is locally
exponentially asymptotically stable if it is biologically meaningful, i.e. if σ > ξρ.

3.3. Global Asymptotic Stability of the Trivial Equilibrium. Suppose σ ≤
ξρ. By means of a Ljapunov function we show that in this case the trivial equilibrium
is globally asymptotically stable in R3

+. For this purpose we set

Φ(x, y, z) =
1
2
(y − ȳ)2 + (2ξ − δ − ȳ)(x + z). (6)

Then for σ = ρȳ,

Φ̇ = −ρ(y − ȳ)2 + x(δ − y)(y − ȳ) + x(2ξ − δ − ȳ)(y − ξ)

= −ρ(y − ȳ)2 − x[(y − ξ)2 + (ξ − σ

ρ
)(2ξ − δ − ξ)] ≤ 0,

Thus Φ is a Ljapunov function for (3) in R3
+ if σ ≤ ξρ. Further, in this case we

have Φ̇ = 0 only if y = ȳ = σ/ρ and x = 0. Now the only invariant subset of the
set y = ȳ is the disease free steady state, hence it is globally asymptotically stable
in R3

+.

3.4. Global Asymptotic Stability of the Disease Equilibrium. Consider now
the disease case σ > ξρ. It is convenient to translate the equation to the disease
equilibrium. We set u = x − x∗, v = y − y∗, w = z − z∗, where (x∗, y∗, z∗) =
(σ−ξρ

ξ−δ , ξ, ξ σ−ξρ
ξ−δ ), and obtain the following new system:

u̇ = w − ξu,

v̇ = −(ρ + x)v − (ξ − δ)u, (7)
ẇ = xv + ξu− w.

We compute the derivatives of the following functions which are well-known in the
theory of epidemics. For x > 0, y > 0, z > 0,

d

dt
(u− x∗ log(x/x∗)) =

ẋ

x
(x− x∗) (8)

= (z − ξx)(x− x∗)/x = z − ξx− z

x
x∗ + ξx∗,

d

dt
(v − y∗ log(y/y∗) =

ẏ

y
(y − y∗) (9)

= −ρ

y
v2 + δ

uv

y
− xy + ξx− ξ2x∗

y
+ ξx∗,

d

dt
(w − z∗ log(z/z∗)) =

ż

z
(z − z∗)

= xy − z − xy

z
z∗ + z∗.

Summing these equations, we obtain the Ljapunov function

ψ0(x, y, z) = (u− x∗ log(x/x∗)) + (v − y∗ log(y/y∗) + (w − z∗ log(z/z∗)),

ψ̇0(x, y, z) = −ρ

y
v2 + δ

uv

y
− x∗[

z

x
+

ξ2

y
+

xyξ

z
− 3ξ].
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Observe that ψ0(x, y, z) approaches infinity at the boundary of the positive octant
of R3. To remove the second term in ψ̇0(x, y, z), which does not have a negative
sign, we consider the modified Ljapunov function

ψ = ψ0 +
δ

ξ − δ
(v − ξ log y).

Note that ψ(x, y, z) approaches infinity at the boundary of the positive octant of
R3 and is bounded below. For this function we obtain

ψ̇ = −ρ

y
v2 +

δuv

y
− x∗(

z

x
+

ξ2

y
+

xyξ

z
− 3ξ)− δ

ξ − δ
(v(ρ + x) + u(ξ − δ))

v

y

= −v2

y
(ρ +

δ(ρ + x)
ξ − δ

)− x∗(
z

x
+

ξ2

y
+

xyξ

z
− 3ξ)

= − δx + ξρ

(ξ − δ)y
v2 − x∗(

z

x
+

ξ2

y
+

xyξ

z
− 3ξ).

Now the first term is obviously nonpositive. Concerning the second term note
that x∗ > 0 in the disease case. Set a = z/x > 0, b = ξ2/y > 0, and consider
ϕ(a, b) = a + b + ξ3

ab − 3ξ on (0,∞)2. Clearly this function is strictly positive for
a+b ≥ 3ξ and for ab ≤ ξ2/3, but ϕ(ξ, ξ) = 0. Therefore it has an absolute minimum
in (0,∞)2. Computing the derivatives of ϕ one finds that (a, b) = (ξ, ξ) is the unique
absolute minimum. Therefore we see that for all values of σ > ξρ and δ ∈ [0, ξ) the
function ψ is a Ljapunov function for system (3), and ψ̇ = 0 if and only if y = ξ
and z = ξx hold. Looking at the equation for v we obtain in case y = ξ, i.e. v = 0

v̇ = −(ξ − δ)u 6= 0

unless u = 0, i.e. x = x∗. Thus the only invariant set contained in the set ψ̇ = 0 is the
disease equilibrium (x∗, y∗, z∗) = (x∗, ξ, ξx∗), hence La Salle’s theorem ([1] implies
convergence of the solutions to this equilibrium, for all initial values not in the set
{0}×R+ ×{0}. This shows that the disease equilibrium is globally asymptotically
stable in R3

+ \ [{0} × R+ × {0}]. If the initial data is in {0} × R+ × {0}, then the
solution obviously converges to the disease free equilibrium.

Thus, Theorem 2.1, and hence Theorems 1.1, 2.2, and 2.3 are proved. The results
of Theorem 2.2 are applicable to the models (2), (4), and (5), since each can be
converted to model (3). Thus, for each of these models of infectious disease, there
is a threshhold value R0, dependent on the specific model parameters, such that if
R0 ≤ 1, then all solutions converege to the unique disease-free equilibrium, and if
R0 > 1, then all solutions converege to the unique disease-endemic equilibrium.
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